Skip to main content

Partisan Bias in Fed Inflation Forecasts?

Following on from my previous post about US Federal Reserve inflation forecast errors, I decided to put together a descriptive graph to see if there might be a partisan bias to these forecast erros. Also, given all of the work in the political economy on political business cycles, I wanted to see if forecast errors changed around elections. (See the previous post for what I mean by Fed inflation forecast error.)  

So, I have two questions:

  1. Have Fed inflation forecast errors been different during Democratic and Republican presidencies?
  2. Are Fed inflation forecast errors different for election periods and non-election periods?

To answer these questions, I simply made a graph using the same inflation forecast error data as before, but arranged in terms of quarters before a US presidential election (quarters with elections are coded 0). I then coloured the inflation errors by the sitting president's party. Finally, I used R's ggplot2 loess function to summarise and compare the errors made during Democratic and Republican presidencies.




Question 1: The Fed did tend to overestimate inflation during Democratic presidencies and underestimate it during Republican presidencies (an Error/Actual score of 0 means that the forecasters perfectly predicted actual inflation). Admittedly we have a pretty small sample of Democratic presidencies (only Carter and Clinton), but it is striking how all of the big underestimates were during Republican presidencies and almost all of the big overestimates were when Democrats had power.

Maybe, Federal Reserve staff anticipate--to an incorrect degree--that Democratic presidents will pursue expansionary policies and vice versa.

Question 2: It is not as clear that forecasts systematically differ in election periods as opposed to non-election periods. Though the spread of the errors across parties does shrink very close to the election. I wonder why this might be?

More to come . . .

The R code to reproduce the plot is:




Comments

Popular posts from this blog

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.I've found the various R methods for doing this hard to remember and usually need to look at old blogposts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function. So, I added a new command–slide–to the DataCombine R package (v0.1.5).Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997. ExamplesNot…

Do Political Scientists Care About Effect Sizes: Replication and Type M Errors

Reproducibility has come a long way in political science. Many major journals now require replication materials be made available either on their websites or some service such as the Dataverse Network. Most of the top journals in political science have formally committed to reproducible research best practices by signing up to the The (DA-RT) Data Access and Research Transparency Joint Statement.This is certainly progress. But what are political scientists actually supposed to do with this new information? Data and code availability does help avoid effort duplication--researchers don't need to gather data or program statistical procedures that have already been gathered or programmed. It promotes better research habits. It definitely provides ''procedural oversight''. We would be highly suspect of results from authors that were unable or unwilling to produce their code/data.However, there are lots of problems that data/code availability requirements do not address.…