Skip to main content

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.

I've found the various R methods for doing this hard to remember and usually need to look at old blog posts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function.

So, I added a new command–slide–to the DataCombine R package (v0.1.5).

Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.

Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997.


Not Cross-sectional data

Let's create an example data set with three variables:

# Create time variable
Year <- 1980:1999

# Dummy covariates
A <- B <- 1:20

Data1 <- data.frame(Year, A, B)

##   Year A B
## 1 1980 1 1
## 2 1981 2 2
## 3 1982 3 3
## 4 1983 4 4
## 5 1984 5 5
## 6 1985 6 6

Now let's lag the A variable by one time unit.


DataSlid1 <- slide(Data1, Var = "A", slideBy = -1)

##   Year A B A-1
## 1 1980 1 1  NA
## 2 1981 2 2   1
## 3 1982 3 3   2
## 4 1983 4 4   3
## 5 1984 5 5   4
## 6 1985 6 6   5

The lag variable is automatically given the name A-1.

To lag a variable (i.e. the lag value at a given time is the value of the non-lagged variable at a time in the past) set the slideBy argument as a negative number. Lead variables, are created by using positive numbers in slideBy. Lead variables at a given time have the value of the non-lead variable from some time in the future.

Time-series Cross-sectional data

Now let's use slide to create a lead variable with time-series cross-sectional data. First create the example data:

# Create time and unit ID variables
Year <- rep(1980:1983, 5)
ID <- sort(rep(seq(1:5), 4))

# Dummy covariates
A <- B <- 1:20

Data2 <- data.frame(Year, ID, A, B)

##   Year ID A B
## 1 1980  1 1 1
## 2 1981  1 2 2
## 3 1982  1 3 3
## 4 1983  1 4 4
## 5 1980  2 5 5
## 6 1981  2 6 6

Now let's create a two time unit lead variable based on B for each unit identified by ID:

DataSlid2 <- slide(Data2, Var = "B", GroupVar = "ID",
                    slideBy = 2)

##   Year ID A B B2
## 1 1980  1 1 1  3
## 2 1981  1 2 2  4
## 3 1982  1 3 3 NA
## 4 1983  1 4 4 NA
## 5 1980  2 5 5  7
## 6 1981  2 6 6  8

Hopefully you'll find slide useful in your own data analysis. Any suggestions for improvement are always welcome.


Tilly Tan said…
in your last exmample, what if i want to have the first 3 vairble in each group to have a lag value of 2, how can i do it?

Tilly, do you mean lag the A and B variables by 2? Or do you mean lag the first three rows for each group by 2?
Highgamma said…
Cool. I can use this to create returns for any time lag.
is this faster than using plyr as is what I'm currently using? plyr is beautiful but incredibly slow at times.

Sebastian for lags/leads with time- series cross-sectional data it will probably be as fast as plyr because it relies on ddply.

There might be a way to have slide use data.table rather than plyr. data.table is usually faster. I'll look into it. Thanks for the comment.
Anonymous said…
I'm using lagpanel() in the {simcf} package which makes sure that the panel structure is taken into account. Works perfectly! The package is described here:
@politicalsciencereplication Thanks for the info. lagepanel looks pretty interesting. I like how it doesn't rely on ddply. Not sure if it does lead variables and has possibly less intuitive syntax for new users wanting to lag a variable in an existing data frame and return the new variable to the old data frame.

You've got a great blog by the way.
Fr. said…
I have submitted a fix that should make the function as quick as possible with plyr. On my training data, it is now as quick as lagpanel (which cannot do lead variables).
Thanks Fr. I just merged it in and the new version of DataCombine should be on CRAN shortly.
Danilo said…
This is by far the easiest function to lag and lead variables that I've seen. It works wonders! Thanks for lowering R's entry costs for newbies like me. :)
Thanks Danilo. Really glad that you found it useful.
Anonymous said…
Thanks very much for this package! I am using your slide function with fairly ordinary Time-series Cross-country dataset. When I use SlideBy=-1 (or SlideBy=1) it works fine, but when I put, say, SlideBy=-2 (or SlideBy=2) I get the following error:

Error in `[<`(`*tmp*`, , NewVar, value = c(NA, NA, NA, NA, :
replacement has 4098 rows, data has 4097

What do you think could cause this problem?
Hi homo-loquens

First of all, can you run the examples in the slide documentation ok?

If so then there might be some issue with your grouping or time variables. Not exactly sure without seeing the data.
Anonymous said…
Thank you, I think I have figured it out for the time being. Would post further if necessary.
Nancy Garero said…
There are lots of data scientist are here for solving your all type of data related problems, but the selecting of best data scientist from the variety of different scientist is also a big problem for us because we need the best data solution provide on very cheap rate. So this can help you better to find the best and cheap data scientist for your work.
Hi Christopher
I really like your slide function! However, I'm getting kind of annoyed about the naming of lag variables where the "-" confuses other functions. Could this possibly be changed into some other naming such as lagivar where i is the lag number and var is the variable name?
Best, Christoffer
When I use slide to construct lagged x, the resulting variable is x-1. When I try to use the dataframe in other functions this name does not work. I could not find to rename it either. Please help.
Rahul Kumar said…
Very interesting blog post.Quite informative and very helpful.This indeed is one of the recommended blog for learners.Thank you for providing such nice piece of article. I'm glad to leave a comment. Expect more articles in future. You too can check this R Programming tutorial for updated knowledge on R Programming.
Unknown said…

Worthful Data Science tutorial. Appreciate a lot for taking up the pain to write such a quality content on Data Science course. Just now I watched this similar Data Science tutorial and I think this will enhance the knowledge of other visitors for sure. Thanks anyway.:-

Popular posts from this blog

A Link Between topicmodels LDA and LDAvis

Carson Sievert and Kenny Shirley have put together the really nice LDAvis R package. It provides a Shiny-based interactive interface for exploring the output from Latent Dirichlet Allocation topic models. If you've never used it, I highly recommend checking out their XKCD example (this paper also has some nice background).LDAvis doesn't fit topic models, it just visualises the output. As such it is agnostic about what package you use to fit your LDA topic model. They have a useful example of how to use output from the lda package.I wanted to use LDAvis with output from the topicmodels package. It works really nicely with texts preprocessed using the tm package. The trick is extracting the information LDAvis requires from the model and placing it into a specifically structured JSON formatted object.To make the conversion from topicmodels output to LDAvis JSON input easier, I created a linking function called topicmodels_json_ldavis. The full function is below. To use it follow …

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…