Skip to main content

US Publishing Dominance?

I ran across this data on science publications by country from the World Bank.


Some quick thoughts:

  • It seems that the EU, contrary to popular wisdom, has maintained a slight lead over the US as the academic science publishing centre for a bit more than a decade.
  • Of course the US (pop. ~ 307 million) is still publishing above its population adjusted weight relative to the EU (pop. ~ 501 million).
  • However, assuming that universities are places where resources are transfered from teaching (i.e. students) to research and given the incredible rise in US student debt (see my previous post) I would have expected to see a larger increase in US publications because presumably US universities would have more resources. Of course there are many different reasons that student debt can increase without an increase in university resources, but an essentially flat absolute number of publications over the entire period is kind of strange. 
  • Finally, what countries are producing the big gains in total global publications? It doesn't seem to be any of the those in the graph.

Comments

PinskVinsk said…
Regarding the countries (other than India, China, and the US) that are producing the gains in research...South Korea? Singapore? Japan? Given that it's science and tech, rather than arts and social science, I would guess that's where all the publishing is coming from.
Oddly, none of those countries individually seem to have had very big increases. Maybe just a lot of emerging market economies are adding a bit to the cumulative number of publications.

Popular posts from this blog

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.I've found the various R methods for doing this hard to remember and usually need to look at old blogposts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function. So, I added a new command–slide–to the DataCombine R package (v0.1.5).Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997. ExamplesNot…

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…

Quick and Simple D3 Network Graphs from R

Sometimes I just want to quickly make a simple D3 JavaScript directed network graph with data in R. Because D3 network graphs can be manipulated in the browser–i.e. nodes can be moved around and highlighted–they're really nice for data exploration. They're also really nice in HTML presentations. So I put together a bare-bones simple function–called d3SimpleNetwork for turning an R data frame into a D3 network graph. ArgumentsBy bare-bones I mean other than the arguments indicating the Data data frame, as well as the Source and Target variables it only has three arguments: height, width, and file. The data frame you use should have two columns that contain the source and target variables. Here's an example using fake data:Source <- c("A", "A", "A", "A", "B", "B", "C", "C", "D") Target <- c("B", "C", "D", "J", "E", "F", &…