Skip to main content

repmis: misc. tools for reproducible research in R

I've started to put together an R package called repmis. It has miscellaneous tools for reproducible research with R. The idea behind the package is to collate commands that simplify some of the common R code used within knitr-type reproducible research papers.

It's still very much in the early stages of development and has two commands:

  • LoadandCite: a command to load all of the R packages used in a paper and create a BibTeX file containing citation information for them. It can also install the packages if they are on CRAN.
  • source_GitHubData: a command for downloading plain-text formatted data stored on GitHub or at any other secure (https) URL.

I've written about why you might want to use source_GitHubData before (see here and here).

You can use LoadandCite in a code chunk near the beginning of a knitr reproducible research document to load all of the R packages you will use in the document and automatically generate a BibTeX file you can draw on to cite them. Here's an example:

# Create vector of package names
PackagesUsed <- c("knitr", "xtable")

# Load and Cite
repmis::LoadandCite(PackagesUsed, file = "PackageCitations.bib") 

LoadandCite draws on knitr's write_bib command to create the bibliographies, so each citation is given a BibTeX key like this: R-package_name. For example the key for the xtable package is R-xtable. Be careful to save the citations in a new .bib file, because LoadandCite overwrites existing files.

Citation of R packages is very inconsistent in academic publications. Hopefully by making it easier to cite packages more people will do so.

Install/Constribute

Instructions for how to install repmis are available here.

Please feel free to fork the package and suggest additional commands that could be included.

Comments

Have you considered a method to specify package versions in LoadandCite? Since packages change over time, it is useful to specify which versions were used. I proposed to deal with this problem with a works_with_R() header in The difficulty of reproducible research using R.
Great idea! I just implemented it. Please download the newest version and let me know if there is anything else I can improve.

Popular posts from this blog

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…

Do Political Scientists Care About Effect Sizes: Replication and Type M Errors

Reproducibility has come a long way in political science. Many major journals now require replication materials be made available either on their websites or some service such as the Dataverse Network. Most of the top journals in political science have formally committed to reproducible research best practices by signing up to the The (DA-RT) Data Access and Research Transparency Joint Statement.This is certainly progress. But what are political scientists actually supposed to do with this new information? Data and code availability does help avoid effort duplication--researchers don't need to gather data or program statistical procedures that have already been gathered or programmed. It promotes better research habits. It definitely provides ''procedural oversight''. We would be highly suspect of results from authors that were unable or unwilling to produce their code/data.However, there are lots of problems that data/code availability requirements do not address.…

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.I've found the various R methods for doing this hard to remember and usually need to look at old blogposts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function. So, I added a new command–slide–to the DataCombine R package (v0.1.5).Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997. ExamplesNot…