Skip to main content

Scrappy Scapers

In an earlier post I presented some R code for a basic way of collecting text from websites. This is a good place to start for collecting text for use in text analysis. 


However, it clearly has some limitations; 
  • You need to have all of the URLs already stored in a .csv file.
  • The method of extracting the text from the downloaded HTML code using <gsub> is a bit imprecise. It doesn't remove the text from common links such as "Home" or "About".
Both of these problems can be solved in R with a bit of work. But I think for bigger scrapping projects it is probably a good idea to use other languages such as Python or Ruby

ProPublica has an excellent little series on scraping that covers how to gather data from online databases and PDFs. This is a really good public service and enables something sadly unusual in journalism: reproducibility. Their chapter on using Ruby and Nokogiri for scraping the Phizer's doctor payments disclosure database is particularly helpful. 

Building on this, I'm thinking of putting together a slideshow for how to use Ruby, Nokogiri, and Mechanize to scrap the Congressional Records database. It will be similar to the slideshow I made for how to use the googleVis and WDI packages to make Google Motion Charts. 

Bit busy over the next few weeks, but now that I've blogged it, it's in my "Must-Do" list.

Comments

Popular posts from this blog

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.I've found the various R methods for doing this hard to remember and usually need to look at old blogposts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function. So, I added a new command–slide–to the DataCombine R package (v0.1.5).Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997. ExamplesNot…

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…

Quick and Simple D3 Network Graphs from R

Sometimes I just want to quickly make a simple D3 JavaScript directed network graph with data in R. Because D3 network graphs can be manipulated in the browser–i.e. nodes can be moved around and highlighted–they're really nice for data exploration. They're also really nice in HTML presentations. So I put together a bare-bones simple function–called d3SimpleNetwork for turning an R data frame into a D3 network graph. ArgumentsBy bare-bones I mean other than the arguments indicating the Data data frame, as well as the Source and Target variables it only has three arguments: height, width, and file. The data frame you use should have two columns that contain the source and target variables. Here's an example using fake data:Source <- c("A", "A", "A", "A", "B", "B", "C", "C", "D") Target <- c("B", "C", "D", "J", "E", "F", &…