Skip to main content

Korean Lessons for the US, Part 2: Look the Other Way, It's for the Economy

In the previous post I pointed to some of the ways that financial regulators in Korea and the US have credibly committed to bad regulation by making themselves bad at collecting financial market information. But there were two unresolved issues I'll cover now:

  1. Why would regulators want weak regulation?

  2. How did Korea get out of this problem?

Answer 1: Sure, there are lots of reasons why regulators would want to have weak regulation. There are the usual stories about crony capitalism, revolving doors, etc. Sure, there probably is something to these theories. But there is also something less sinister, but more problematic going on:

loose regulation might be good for the general economy in the short-term.

In fact, this is how US regulators have been talking about the issue (for example see this great article from the FT). The basic argument is that enforcing tight capital adequacy requirements, lending standards, etc., makes less money and credit available to lend to businesses, people, etc. When businesses and people have less credit they spend less, economy tanks.

In 1997 Korea the regulators wanted to keep the economy moving along by having banks keep lending to already highly indebted industrial conglomerates (chaebol). They would presumable use the borrowed money to keep building new factories and employing more people.

In present day America the regulators want basically the same thing.

This is where credibly committing to bad regulation comes in. If a country has tough regulations on the books--like the US's Dodd-Frank--or it looks like they could be new laws, banks might begin to slow down their lending. This is what the regulations require them to do. But if regulators can credible demonstrate that they won't be able to gather enough information to enforce the regulations, then banks can feel safe lending at the same rate.

Sure, crony capitalism is a bad reason for weak regulation, but is a desire to keep the economy moving along also bad? I guess for tomorrow it's not that bad. So, why not have weak regulation all the time? Why do we need to go through this dance of credibly committing to weak regulation? Well, the expansion of credit (more and more loans) isn't always a good thing, especially when it is unlikely to be be paid back (this is part of why regulations were created in the first place). Regulations should prevent bubbles.

The problem gets worse if banks don't have enough savings to cover the bad debts. As we've recently seen, these problems tend to snowball, and it is typically the government (and the public's money) that end up covering the bad debts (for more nuance on government responses see this book by Guillermo Rosas).

Is it bad or good to weaken regulation by credibly committing to not have enough information to actually regulate? Over the long run, it seems pretty bad.

How can we get regulators, who may not even have their jobs over the long-run, especially if the economy stays bad, to break their credible commitments to bad regulation?

This gets to the second question.

Answer 2: In Korea the IMF came in and forced them to change. Hm, I don't know how practical this lesson is for the US. What are the odds that the US will have to implement IMF loan conditions any time soon?

Comments

Popular posts from this blog

Do Political Scientists Care About Effect Sizes: Replication and Type M Errors

Reproducibility has come a long way in political science. Many major journals now require replication materials be made available either on their websites or some service such as the Dataverse Network. Most of the top journals in political science have formally committed to reproducible research best practices by signing up to the The (DA-RT) Data Access and Research Transparency Joint Statement.This is certainly progress. But what are political scientists actually supposed to do with this new information? Data and code availability does help avoid effort duplication--researchers don't need to gather data or program statistical procedures that have already been gathered or programmed. It promotes better research habits. It definitely provides ''procedural oversight''. We would be highly suspect of results from authors that were unable or unwilling to produce their code/data.However, there are lots of problems that data/code availability requirements do not address.…

Showing results from Cox Proportional Hazard Models in R with simPH

Update 2 February 2014: A new version of simPH (Version 1.0) will soon be available for download from CRAN. It allows you to plot using points, ribbons, and (new) lines. See the updated package description paper for examples. Note that the ribbons argument will no longer work as in the examples below. Please use type = 'ribbons' (or 'points' or 'lines'). Effectively showing estimates and uncertainty from Cox Proportional Hazard (PH) models, especially for interactive and non-linear effects, can be challenging with currently available software. So, researchers often just simply display a results table. These are pretty useless for Cox PH models. It is difficult to decipher a simple linear variable’s estimated effect and basically impossible to understand time interactions, interactions between variables, and nonlinear effects without the reader further calculating quantities of interest for a variety of fitted values.So, I’ve been putting together the simPH R p…

Slide: one function for lag/lead variables in data frames, including time-series cross-sectional data

I often want to quickly create a lag or lead variable in an R data frame. Sometimes I also want to create the lag or lead variable for different groups in a data frame, for example, if I want to lag GDP for each country in a data frame.I've found the various R methods for doing this hard to remember and usually need to look at old blogposts. Any time we find ourselves using the same series of codes over and over, it's probably time to put them into a function. So, I added a new command–slide–to the DataCombine R package (v0.1.5).Building on the shift function TszKin Julian posted on his blog, slide allows you to slide a variable up by any time unit to create a lead or down to create a lag. It returns the lag/lead variable to a new column in your data frame. It works with both data that has one observed unit and with time-series cross-sectional data.Note: your data needs to be in ascending time order with equally spaced time increments. For example 1995, 1996, 1997. ExamplesNot…